A Nondominated Sorting Genetic Algorithm for Shortest Path Routing Problem

نویسندگان

  • C. Chitra
  • P. Subbaraj
چکیده

The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied. Keywords—Multiobjective optimization, Non-dominated Sorting Genetic Algorithm, Routing, Weighted sum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Placement and Sizing of Distributed Generation Via an Improved Nondominated Sorting Genetic Algorithm II

The use of distributed generation units in distribution networks has attracted the attention of network managers due to its great benefits. In this research, the location and determination of the capacity of distributed generation (DG) units for different purposes has been studied simultaneously. The multi-objective functions in the optimization model are reducing system line losses; reducing v...

متن کامل

Solving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm

This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...

متن کامل

Multiobjective Optimization Solution for Shortest Path Routing Problem

The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive...

متن کامل

An interactive bi-objective shortest path approach: searching for unsupported nondominated solutions

In many network routing problems several conflicting objectives must be considered. Even for the bi-objective shortest path problem, generating and presenting the whole set of nondominated solutions (paths) to a decision maker, in general, is not effective because the number of these paths can be very large. Interactive procedures are adequate to overcome these drawbacks. Current et al. [1] pro...

متن کامل

Weighted Sum-based Genetic Algorithm for Bicriteria Network Design Problem

This paper proposes a new Multiobjective Genetic Algorithm (MOGA) approach for Bicriteria Network Design (BND) Problem. The objectives are to maximize flow and minimize cost. The proposed method adopts priority-based encoding method to represent a path in the network. Different from other encoding methods, such as path oriented encoding method, priority-based encoding method can be applied for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012